Contacto Correo Web Intranet

Métodos estadísticos avanzados en Ecología y Evolución

Docente a cargo

-Pablo Inchausti, profesor titular de Ecología de la Universidad de la República, Uruguay.

Contenidos

1. Modelo Lineal General: Estructura y suposiciones del Modelo Lineal General. El análisis de varianza, de regresión simple y múltiple y de covarianza como casos particulares del Modelo Lineal General. Magnitud del efecto (effect size) estimada en los Modelos Lineales Generales y su interpretación. Diseños factoriales: interacciones estadísticas entre variables explicativas, interpretación de resultados y tests a posteriori. Análisis de residuos: validación y evaluación de la calidad del ajuste de un modelo estadístico.

2. Modelación estadística: El método genérico de máxima de verosimilitud para la estimación de los parámetros y el test de hipótesis estadísticas. Propiedades fundamentales de los estimadores de máxima verosimilitud. Principios fundamentales de la Estadística Bayesiana. Los modelos estadísticos como hipótesis y el test imultáneo de múltiples hipótesis estadísticas empleando la Teoría de la Información. Importancia de la parsimonia en estadística. Criterio de información de Akaike (AIC) y su uso en la selección de modelos estadísticos. Pesos de Akaike y su interpretación. Obtención e interpretación del modelo estadístico “promedio”.

3. Modelo Lineal Generalizado (GLM): componentes de los GLM: predictor lineal de las variables explicativas, función de conexión y errores aleatorios. El GLM como marco teórico general para el análisis de datos univariados en escalas binaria (Binomial), de conteos (Poisson y Binomial Negativa) y continua (Normal, Gama, ognormal). Interpretación de los parámetros estimados de cada GLM. Selección de modelos en los GLM. Magnitud del efecto (effect size) estimada en los GLM y su interpretación. Sobredispersión de GLM para datos discretos: diagnóstico y soluciones. Análisis de residuos para la validación y evaluación de la calidad del ajuste de un GLM.

4. Modelo Lineal y Generalizado Mixto (GLMM): definición de efectos fijos y efectos aleatorios y su interpretación biológica. Uso de los GLMM para modelar restricciones de aleatorización de unidades muestrales y el diseño experimental. Principios fundamentales del diseño experimental. El ajuste de los GLMM por Máximo de Verosimilitud Restingido. Selección de modelos para los GLMM. Ejemplos de análisis con diseños experimentales en bloques aleatorizados, anidados, parcelas divididas (splitplot) y medidas repetidas. Interpretación de resultados (efectos fijos y aleatorios) y análisis de residuos de un GLMM. 

5. Modelo Aditivo Generalizado (GAM): los GAM como generalizaciones no paramétricas y no lineales de los GLM. Componentes de un GAM: función lineal, estructura de los errores, función de enlace y función de suavizado. Introducción a las funciones de suavizado comúnmente empleadas en Ecología. Problemas de sobreajuste (overfitting) de los GAM dependiendo de la función de suavizado. Utilidad y limitaciones de los GAM ilustrada con ejemplos. Introducción a las regresiones multinomiales y a los árboles de regresión (CART: Classification And Regression Trees) y su interpretación.

Evaluación

Los alumnos serán evaluados a través de un proyecto final de análisis de datos, sobre el cual entregarán un informe individual com la interpretación detallada de los resultados. Este informe será enviado por email dos semanas después de la fecha final del curso. Además de la nota del curso, los estudiantes recibirán por email la corrección comentada de su informe final.

Modalidad

Curso teórico.

Carga horaria: 60 horas.

Arancel

Pago hasta el 24 de agosto: $3.000

Pago posterior al 24 de agosto: $3.500

Enviar curriculum vitae en formato pdf (máximo 3 páginas) y formulario de preinscripción a: cursos@mendoza-conicet.gob.ar.

La selección de los alumnos preinscriptos se realizará en base a los antecedentes presentados una vez cerrada la preinscripción.